In this article we will learn about Multiple Angle

**Sin2θ= 2SinθCosθ****Cos2θ= Cos²θ-Sin²θ****Cos2θ= 2Cos²θ-1****Cos2θ= 1-2Sin²θ****1+Cos2θ= 2Cos²θ****1-Cos2θ= 2Sin²θ****Tan²θ= (1-Cos2θ)/(1+Cos2θ)****Sin2θ= (2Tanθ)/(1+Tanθ)****Cos2θ= (1-Tan²θ)/(1+Tan²θ)****Tan2θ= (2Tanθ)/(1-Tan²θ)****Sin3θ= 3Sinθ-4Sin³θ****Cos3θ= 4Cos³θ-3Cosθ****Tan3θ= (3Tanθ-tan³θ)/(1-3Tan²θ)**I hope you have find this article helpful. If you like this article then you can share this article with your friends also you can Subscribe to our blog. I will try to update all useful Mathematical Formula. Thanks for reading this article.- Get link
- Other Apps

## Comments

## Post a Comment