In this article we will learn about Multiple Angle

Multiple Angle 
 Sin2θ= 2SinθCosθ
 Cos2θ= Cos²θSin²θ
 Cos2θ= 2Cos²θ1
 Cos2θ= 12Sin²θ
 1+Cos2θ= 2Cos²θ
 1Cos2θ= 2Sin²θ
 Tan²θ= (1Cos2θ)/(1+Cos2θ)
 Sin2θ= (2Tanθ)/(1+Tanθ)
 Cos2θ= (1Tan²θ)/(1+Tan²θ)
 Tan2θ= (2Tanθ)/(1Tan²θ)
 Sin3θ= 3Sinθ4Sin³θ
 Cos3θ= 4Cos³θ3Cosθ
 Tan3θ= (3Tanθtan³θ)/(13Tan²θ)
I hope you have find this article helpful. If you like this article then you can share this article with your friends also you can Subscribe to our blog. I will try to update all useful Mathematical Formula. Thanks for reading this article.
Comments
Post a Comment