Latest Post

Formula of Multiple Angle

In this article we will learn about Multiple Angle



Sin2θ= 2SinθCosθCos2θ= Cos²θ-Sin²θCos2θ= 2Cos²θ-1Cos2θ= 1-2Sin²θ1+Cos2θ= 2Cos²θ1-Cos2θ= 2Sin²θTan²θ= (1-Cos2θ)/(1+Cos2θ)Sin2θ= (2Tanθ)/(1+Tanθ)Cos2θ= (1-Tan²θ)/(1+Tan²θ)Tan2θ= (2Tanθ)/(1-Tan²θ)Sin3θ= 3Sinθ-4Sin³θCos3θ= 4Cos³θ-3CosθTan3θ= (3Tanθ-tan³θ)/(1-3Tan²θ) I hope you have find this article helpful. If you like this article then you can share this article with your friends also you can Subscribe to our blog. I will try to update all useful Mathematical Formula. Thanks for reading this article.

Formula of Transformation

In this article we will learn about Transformation

Transformation
Transformation


  • SinC+SinD= 2Sin(C+D/2)Cos(C-D/2)
  • SinC-SinD= 2Cos(C+D/2)Sin(C-D/2)
  • CosC+CosD= 2Cos(C+D/2)Cos(C-D/2)
  • CosC-CosD= 2Sin(C-D/2)Sin(D-C/2)
  • 2SinACosB=Sin(A+B)+Sin(A-B)
  • 2CosASinB=Sin(A+B)-Sin(A-B)
  • 2CosACosB=Cos(A+B)+Cos(A-B)
  • 2SinASinB=Cos(A-B)-Cos(A+B)

I hope you have find this article helpful. If you like this article then you can share this article with your friends also you can Subscribe to our blog. I will try to update all useful Mathematical Formula. Thanks for reading this article.

Comments