Latest Post

Formula of Multiple Angle

In this article we will learn about Multiple Angle

Sin2θ= 2SinθCosθCos2θ= Cos²θ-Sin²θCos2θ= 2Cos²θ-1Cos2θ= 1-2Sin²θ1+Cos2θ= 2Cos²θ1-Cos2θ= 2Sin²θTan²θ= (1-Cos2θ)/(1+Cos2θ)Sin2θ= (2Tanθ)/(1+Tanθ)Cos2θ= (1-Tan²θ)/(1+Tan²θ)Tan2θ= (2Tanθ)/(1-Tan²θ)Sin3θ= 3Sinθ-4Sin³θCos3θ= 4Cos³θ-3CosθTan3θ= (3Tanθ-tan³θ)/(1-3Tan²θ) I hope you have find this article helpful. If you like this article then you can share this article with your friends also you can Subscribe to our blog. I will try to update all useful Mathematical Formula. Thanks for reading this article.


Hello friends, Welcome to our blog This is D.Ekka a professional Blogger, Digital Marketer and Entrepreneur. I love doing work which makes me happy, that's why I love blogging. You will love exploring Logic and Mathematical Ideas on our blog. Live your dreams as much as you can.